Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 355-370, 2023.
Article in English | WPRIM | ID: wpr-1003160

ABSTRACT

Numerous studies have aimed to develop novel advanced vaccines, in part because traditional vaccines have been unsuccessful in preventing rapidly emerging and reemerging viral and bacterial infections. There is a need for an advanced vaccine delivery system to ensure the successful induction of humoral and cellular immune responses. In particular, the ability of nanovaccines to modulate intracellular antigen delivery by inducing exogenous antigens (loaded onto major histocompatibility complex class 1 molecules) in CD8+ T cells, the so-called cross-presentation pathway, has attracted a great deal of attention. Protection against viral and intracellular bacterial infections relies on cross-presentation.This review discusses the advantages, requirements, and preparation of nanovaccines, the cross-presentation mechanism, the several parameters affecting cross-presentation by nanovaccines, and future perspectives.

2.
Tissue Engineering and Regenerative Medicine ; (6): 693-712, 2021.
Article in English | WPRIM | ID: wpr-904105

ABSTRACT

Vaccination has been recently attracted as one of the most successful medical treatments of the prevalence of many infectious diseases. Mucosal vaccination has been interested in many researchers because mucosal immune responses play part in the first line of defense against pathogens. However, mucosal vaccination should find out an efficient antigen delivery system because the antigen should be protected from degradation and clearance, it should be targeted to mucosal sites, and it should stimulate mucosal and systemic immunity. Accordingly, mucoadhesive polymeric particles among the polymeric particles have gained much attention because they can protect the antigen from degradation, prolong the residence time of the antigen at the target site, and control the release of the loaded vaccine, and results in induction of mucosal and systemic immune responses. In this review, we discuss advances in the development of several kinds of mucoadhesive polymeric particles for mucosal vaccine delivery.

3.
Tissue Engineering and Regenerative Medicine ; (6): 693-712, 2021.
Article in English | WPRIM | ID: wpr-896401

ABSTRACT

Vaccination has been recently attracted as one of the most successful medical treatments of the prevalence of many infectious diseases. Mucosal vaccination has been interested in many researchers because mucosal immune responses play part in the first line of defense against pathogens. However, mucosal vaccination should find out an efficient antigen delivery system because the antigen should be protected from degradation and clearance, it should be targeted to mucosal sites, and it should stimulate mucosal and systemic immunity. Accordingly, mucoadhesive polymeric particles among the polymeric particles have gained much attention because they can protect the antigen from degradation, prolong the residence time of the antigen at the target site, and control the release of the loaded vaccine, and results in induction of mucosal and systemic immune responses. In this review, we discuss advances in the development of several kinds of mucoadhesive polymeric particles for mucosal vaccine delivery.

4.
Korean Journal of Obstetrics and Gynecology ; : 144-149, 1992.
Article in Korean | WPRIM | ID: wpr-127424

ABSTRACT

No abstract available.


Subject(s)
Hernia, Umbilical , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL